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ABSTRACT

In this paper we present an application of Alternating Direction Solver (ADS) for solution of non-stationary PDE-
s with isogeometric finite element method. We illustrate this approach by solving examplary non-stationary three-
dimensional problemusing explicit Euler scheme. In particular we focus on the difficult problem of non-linear flow in

heterogenous media.
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INTRODUCTION

The Alternating Directions Implicit (ADI) method has been originally introduced in [1-4] to solve parabolic,
hiperbolic and elliptic PDE-s. The method has been applied as a solver to two-dimensional non-stationary problem [5], as
well as preconditioner for iterative solvers in case of complex geometries [6]. The ADS solver can be applied for solution
of non-stationary problems, in particular for the solution of non-linear flow in heterogenous media. The ADS solver
transforms the 2D or 3D problem into two or three 1D problems with multiple right-hand-sides. In this paper we present
the application of the sequential solver to non-linear flow in heterogenous media [7]. The other applications may include

heat transfer problems or linear elasticty problems, solved e.g. with Newmark scheme [8].
Algorithm
1. B-Spline Basis Functions

Classical higher order finite element methods with hierarchical basis functions deliver CO continuity on the
interfaces between elements and C” continuity inside of elements. The isogeometric finite element method delivers global
C™' continuity inside the elements. Isogeometric basis functions can be represented by recursive Cox-de-Boor formula

presented in equation (1).
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2. Alternating Direction Solver for Time Dependent Problems

In this section we transform time dependent problem to be used with ADS. First we apply the L? isogeometric

projection for time the problem.

B L) =f(r, ) nQX (0,T) .
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u(x,0) —up(x) inQ
Next we transform time dependent problem into weak form
(v, @) +b(v,w)=(v,f)) Vv €V
ot/ Q
Where
b(u,v) = (v, LWw))gand (f,, ,)Q = [, fif, dx
Finally we can utilize Forward Euler scheme
ou  Upp1—Ug

=~

at At

0,5+ 0, L))o = 0 f)a vvev

W U)o = Wy + At[r, — L(u)DoVv €V

3. Alternating Directions Isogeometric L’ Projection Solver
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Following [5, 6] we desribe the the L’ alternating direction solver that reduces the 2D or 3D

Q

which is equivalent to

Q

L>  projection  problem  into 2 or 3 1D problems  with  multiple
The projection problem can be summarized as min| > 5,;B; — f
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when the two dimensional B-spline basis are built from tensor products of two one dimensional basis

B* :{Bp""BNX }and By:iBl’“"BNy }

We notice that

Igl(x)gz(y)zIjgl(x)gz(y)zJ‘gl(x)_.jgz(y) (10)

which implies

ﬁyqy!gg !quy{%& !EB]YV“_IEE !P«YB&.IEB& , (&5
: .. : : . : 1 e
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(BB BB,
[BiBT - [BB;,
(88 - (85 [B8; - [BB] [(Br5;)r
. . . ! . . . . Y . bll “ .
[B:B7 — [BB BB, - [B'B L:] B8y )r
g e ¢ y i LN, Q
. : . : : = ;
J'B]yv'ygly J‘Bz}\}J,Bf J.Bz)vB}}v J'B]yvyB]'\V,y {bN‘,l ] J'(BJ}VJBf)f
yoo. . Yoo 7 . . ! : ? :
: . : : . . b 7' ! (12)
(BB - [BLB [ [ (D) | s s )
y Y 7 ! ’

www.iaset.us editor@iaset.us



102

Also, please notice that

)

All sub-matrices are invertible, so we end up with
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Now, we perform the following re-ordering in the block system
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by, by ) R
b1 N, bNy,l 11 N, tN 1
- : : - : (15)
by, i by v, Iy, L,
by, v, by, v, In,.N, In,.N,
to get
yny Yy py
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bN) N, bNy,N‘ bN) N, dNy,N‘

This algorithm for two dimensional L* projection with N unknowns involves solutions of two one dimensional
systems with N"? unknowns and N right hand sides.

www.iaset.us editor@iaset.us



104 Marcin Lo$, Maciej Wozniak & Maciej Paszynski
This algorithm for three dimensional L* projection with N unknowns involves solutions of two one dimensional

systems with N'* unknowns and N right hand sides.

4. Non-Linear Flow in Heterogenous Media

In this section we present the application of the isogeometric L* projection solver for the simulation of the

problem of nonlinear flows in highly-heterogeneous porous media [12]. The time dependent problem is given by:

2L =fxHinQx(0,T) (17)
u(x,0) = uy(x) in Q (13)
(U'Z_I:)Q +b(w,u) = (W, Vv EV (19)

We transform the time dependent problem into weak form where:

b(u,v) = (v, L(u))q (20)
and
(fvfz)Q:fQ frfz dx @)

We can utilize Forward Euler scheme

ou  Urp1—Ut

at = At (22)
(0, 00 + b(v,u) = (v, )QVVEY (23)
(wut +1)g = (v ut)g +At[(v, g — b(v,W)IVVEV 24
Non-linear flow in heterogenous media

2O -7 (K()Tu) = h(x) 25)
Where u-pressure, K-permeability, h-forcing, domain D = [0,1]3

h(x) =1+ sin(2rx,) sin(2mx,) sin(2mx3) (26)
K(x,u, 1) = K (x)e' (27

Where Kjis the formation map, see Figure 1.
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Figure 1: Initial State and the Formation Map (K;=1000 in the Gray Areas, 0 in Other Places)

We use the time step At = 1075 due to Currant-Fourrier-Levy (CFL) condition restriction.

We solve the problem over the cube Q = [0,1]> domain. We utilize the isogeometric L* projection solver to
execute the Euler scheme for the above problem. The time step size has been selected as 107. The initial value is a ball

with radius 0.05 and maximum value 0.02. The snapshots from the numerical simulation are presented in Figures 2, 3 and
4.

We would like to emphesize that transformation of the 3D problem into three 1D problems with multiple right
hand sides results in reduction of the computational cost from quadratic to linear cost, for every iteration of the ADS solver

for non-stationary problem.

(d) step 200 (e) step 400 (f) step 600
Figure 2: Snapshots from the Numerical Simulation, Time Steps 0, 20, 100, 200, 400 and 600
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(g) step 800 (h) step 1000

(j) step 4000 (k) step 6000 (1) step 8000
Figure 3: Snapshots from the Numerical Simulation, Time Steps 800, 1000, 2000, 4000, 6000 and 8000

(m) step 10000 (n) step 15000 (o) step 20000
Figure 4: Snapshots from the Numerical Simulation, Time Steps 10000, 15000 and 20000

CONCLUSIONS

In this paper we presented the application of the Alternating Direction Solver for solution of non-stationary
problems. We have tested the solver on the problem of non-linear flow in heterogenous media [7]. The important extension
of this method is the parallelization of the ADS solver, which has been described in our related paper [9]. Future work will

include the application of the GPU solver for solution of 1D problems with multiple right-hand sides [10].
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